Some Symmetric Identities involving a Sequence of Polynomials

نویسندگان

  • Yuan He
  • Wenpeng Zhang
چکیده

In this paper we establish some symmetric identities on a sequence of polynomials in an elementary way, and some known identities involving Bernoulli and Euler numbers and polynomials are obtained as particular cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME NEW SYMMETRIC IDENTITIES INVOLVING q-GENOCCHI POLYNOMIALS UNDER S4

In the paper, we derive some new symmetric identities of q-Genocchi polynomials arising from the fermionic p-adic q-integral on Zp.

متن کامل

New identities involving Bernoulli and Euler polynomials

Using the finite difference calculus and differentiation, we obtain several new identities for Bernoulli and Euler polynomials; some extend Miki’s and Matiyasevich’s identities, while others generalize a symmetric relation observed by Woodcock and some results due to Sun.

متن کامل

Jack Polynomials and Some Identities for Partitions

We prove an identity about partitions involving new combinatorial coefficients. The proof given is using a generating function. As an application we obtain the explicit expression of two shifted symmetric functions, related with Jack polynomials. These quantities are the moments of the “α-content” random variable with respect to some transition probability distributions.

متن کامل

Identities on Bell polynomials and Sheffer sequences

In this paper, we study exponential partial Bell polynomials and Sheffer sequences. Two new characterizations of Sheffer sequences are presented, which indicate the relations between Sheffer sequences and Riordan arrays. Several general identities involving Bell polynomials and Sheffer sequences are established, which reduce to some elegant identities for associated sequences and cross sequences.

متن کامل

Some symmetric identities for the generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials

In 2008, Liu and Wang established various symmetric identities for Bernoulli, Euler and Genocchi polynomials. In this paper, we extend these identities in a unified and generalized form to families of Hermite-Bernoulli, Euler and Genocchi polynomials. The procedure followed is that of generating functions. Some relevant connections of the general theory developed here with the results obtained ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2010